Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck

2005-10-24
2005-01-3766
A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration. The emission control devices included a deNOx filter and a diesel particle filter. Over the transient test, the emissions met the 2007 standards. In July 2004, the modified engine was installed into a Class 8 tractor for use by a grocery fleet. Chassis emission testing of the modified vehicle was conducted at the National Renewable Energy Laboratory's (NREL) Renewable Fuels and Lubricants (ReFUEL) facility. Testing included hot and cold replicate Urban Dynamometer Driving Schedule (UDDS) and New York Composite (NYComp) cycles and several steady-state points. The objective of the testing was to demonstrate the vehicle's with the modified engine.
Technical Paper

A Three Year Comparison of Natural Gas and Diesel Transit Buses

1999-11-15
1999-01-3738
This report details the experiences of two California public transit agencies that replaced aging diesel buses with new compressed natural gas (CNG) buses in 1994. The operating characteristics and costs of 170 natural gas buses are compared with 73 older diesel buses. The natural gas bus fleets have operated well and led to cost reductions in both fleets. The findings are particularly significant because both Sacramento Regional Transit District (RT) and SunLine Transit Agency have been using the same engine-chassis configuration, thus enabling a valid method to combine cost data for a large sample fleet of buses. The data indicate that labor for diesel equipment was almost twice that for CNG vehicles, parts were 25% more and fuel costs were nearly double. In 1997, CNG buses saved RT over $1 million in fuel, maintenance, parts and hazardous waste disposal, a 38% per mile reduction over the cost of their older diesel buses.
Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
X